Package: cpfa 1.1-6

cpfa: Classification with Parallel Factor Analysis

Classification using Richard A. Harshman's Parallel Factor Analysis-1 (Parafac) model or Parallel Factor Analysis-2 (Parafac2) model fit to a three-way or four-way data array. See Harshman and Lundy (1994): <doi:10.1016/0167-9473(94)90132-5>. Uses component weights from one mode of a Parafac or Parafac2 model as features to tune parameters for one or more classification methods via a k-fold cross-validation procedure. Allows for constraints on different tensor modes. Supports penalized logistic regression, support vector machine, random forest, feed-forward neural network, regularized discriminant analysis, and gradient boosting machine. Supports binary and multiclass classification. Predicts class labels or class probabilities and calculates multiple classification performance measures. Implements parallel computing via the 'parallel' and 'doParallel' packages.

Authors:Matthew A. Snodgress [aut, cre]

cpfa_1.1-6.tar.gz
cpfa_1.1-6.zip(r-4.5)cpfa_1.1-6.zip(r-4.4)cpfa_1.1-6.zip(r-4.3)
cpfa_1.1-6.tgz(r-4.4-any)cpfa_1.1-6.tgz(r-4.3-any)
cpfa_1.1-6.tar.gz(r-4.5-noble)cpfa_1.1-6.tar.gz(r-4.4-noble)
cpfa_1.1-6.tgz(r-4.4-emscripten)cpfa_1.1-6.tgz(r-4.3-emscripten)
cpfa.pdf |cpfa.html
cpfa/json (API)

# Install 'cpfa' in R:
install.packages('cpfa', repos = c('https://brom2011.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.90 score 496 downloads 14 exports 24 dependencies

Last updated 22 days agofrom:4212cbd5d0. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 02 2024
R-4.5-winOKNov 02 2024
R-4.5-linuxOKNov 02 2024
R-4.4-winOKNov 02 2024
R-4.4-macOKNov 02 2024
R-4.3-winOKNov 02 2024
R-4.3-macOKNov 02 2024

Exports:cpfacpmcpm.allkcv.gbmkcv.nnkcv.plrkcv.rdakcv.rfkcv.svmkcvcheckplotcpfapredict.tunecpfaprint.tunecpfatunecpfa

Dependencies:classCMLScodetoolsdata.tabledoParallele1071foreachglmnetiteratorsjsonlitelatticeMASSMatrixmultiwaynnetproxyquadprograndomForestRcppRcppEigenrdashapesurvivalxgboost